	[image: image4.png]
	Developer’s Manual

[image: image1.jpg]
Developer’s Manual

May 3, 2002

Project Sponsor

Professor Daniel A. Connors

Department of Electrical and Computer Engineering

University of Colorado at Boulder

Campus Box 425, Boulder, CO 80309-0425

Project Team

Joel Dice - Gabe Johnson - Jamie Lunsford - Eric Minick - Andrew Strotheide

Department of Computer Science, University of Colorado at Boulder

 Table of Contents

11
Project Statement

12
Introduction

12.1
Team and Sponsor Information

12.2
Problem Context

22.3
OneBook Solution

23
Installation

23.1
Hardware and Software Requirements

23.2
Loading the Distribution

23.3
Building and Installing the Software

23.4
Final Setup

24
A Tour of the System

34.1
The OneBook System Architecture

34.1.1
JSP Layer

64.1.2
Object Layer

94.1.3
Database Manager and Database

114.2
Example: Creating a New Assignment

114.2.1
Filling out the Form - createAssignment.jsp

124.2.2
Retrieving files – FileUpload.java

124.2.3
Validating Input – processAssignment.jsp and AssignmentBean.java

124.2.4
Creating a Primitive – Assignment.java

134.2.5
Finishing Up

134.3
Extending OneBook

134.3.1
User Interface Extensions

144.3.2
Primitive Extensions

144.3.3
Database Extensions

144.4
Known Bugs

155
Summary

156
Related Documents

166.1
Other OneBook Documentation

166.2
Supporting Software

166.3
Additional Documentation

167
Glossary

178
Document Revision History

1 Project Statement

OneBook Educational Technology is a unified mechanism by which students and teachers can effectively exchange course materials for many classes, giving students the ability to archive that course data, and instructors the ability to compile statistics that represent their students’ abilities and performance in their classes.

2 Introduction

This document is composed principally of two parts. The first part details the requirements and instructions for installing and setting up the OneBook system. The second part provides a high-level tour of this system’s design and implementation. This tour includes a description of its architecture, a specific example to illustrate that architecture, an introduction to the process of modifying the code, and, finally, a list of known problems with the system. In addition, we provide a listing of related documents, including a Javadoc listing of the API and a listing of the MySQL tables that make up the database. First, however, we introduce the team and sponsor, the problem context in which we are working, and the solution we have implemented.

2.1 Team and Sponsor Information

Daniel Connors, the sponsor of this project, is a professor in the Department of Electrical and Computer Engineering, and the Department Computer Science at the University of Colorado at Boulder.

Joel Dice, Gabe Johnson, Jamie Lunsford, Eric Minick and Andrew Strotheide are senior undergraduate students in the Department of Computer Science at the University of Colorado at Boulder. The OneBook project is being undertaken by the five of them as part of their Senior Software Engineering Projects class.

2.2 Problem Context

At an abstract level, the educational process can be characterized by the exchange of information between students and instructors. Lately, technology such as the World Wide Web has affected this process, allowing instructors to post various forms of information to class web sites and, in some cases, allowing students to submit work and feedback electronically. However, the extent to which the Web is utilized for education varies dramatically, even within a college or a single department. Indeed, many of the most compelling tools for this application have proven too intimidating to all but the most enthusiastic teachers. Tools which compile and search databases of course work or generate detailed statistics to characterize student performance can be extremely helpful, but remain difficult to implement from scratch. The purpose of OneBook is to package these and other tools into a consistent and easy-to-use interface, adaptable to a variety of academic environments.

2.3 OneBook Solution

Figure 2‑1 illustrates the principle services that OneBook provides to students and instructors.

[image: image2.png]
Figure 2‑2: Top-Level Overview

As indicated, OneBook allows students and instructors to share a variety of information, including assignments, grades, and feedback. Because this information persists in a database, it can easily be browsed and searched at any time – even years after the class of interest has ended. Moreover, OneBook is capable of sorting and summarizing class information, thereby generating student calendars and performance statistics.

3 Installation

This section first describes the required hardware and software for running a OneBook server. Next, it describes the steps you should take to successfully load and install the distribution on your target system.

3.1 Hardware and Software Requirements

Due to the fact that OneBook relies on software which is available for a variety of platforms and architectures, the number of configurations on which it will run is probably quite large. However, we as developers have not had the time or resources to test the system on more than a handful of the theoretically compatible configurations, and so the following requirements are based on an environment in which it is known to run successfully.

3.1.1 Hardware Requirements

As with any server application, the processing power, network bandwidth, and other hardware resources available to OneBook will directly influence its performance under load. We suggest the following minimum hardware specification under which OneBook will perform satisfactorily:

	Resource
	Minimum Required Performance or Capacity

	Processor
	600MHz Intel Pentium III or equivalent

	Main Memory
	256MB RAM

	Network Connection
	T1 (1.544Mbps)

3.1.2 Software Requirements

OneBook is known to run under recent versions of Microsoft Windows and Linux, and will probably run under many other operating systems. However, this document assumes installation under Red Hat Linux 7.2. Additional software requirements follow.

	Resource
	Required Implementation

	Operating System
	Red Hat Linux 7.2

	JSP Server
	Apache Tomcat 3.2 or higher

	JRE
	Sun Java 2 Standard Edition 1.3 or higher

	Database
	MySQL 3.23 or higher

	JDBC Driver
	MM.MySQL 2.0.7 or higher

3.2 Loading the Distribution

If your server satisfies the above requirements, you are ready to install OneBook. The distribution is available as a JAR (Java Archive) file, the contents of which must be extracted before the application can be run. Feel free to extract the contents of the JAR file to any directory on your server such that it is readable by Tomcat. It will occupy approximately 3 MB when uncompressed, including the source code.

For example, if the package is located at /mnt/cdrom/onebook.jar and you wish to install the application in /home/user/webapps/, you would type the following in the shell:

$ cd /home/user/webapps

$ jar xf /mnt/cdrom/onebook.jar

The above jar command will unpack the application and source files into directory tree with onebook/ as its root. For the remainder of the document, we will refer to this root directory as $ONEBOOK_HOME. Thus, in the above example, $ONEBOOK_HOME is equivalent to /home/user/webapps/onebook/.
3.3 Installing the Software

Since the executables for OneBook consist of platform-independent Java .class files, these executables come pre-built, and do not need to be built again unless the source code is changed. However, there are a few steps you must take before the application is ready to run on your system.

3.3.1 Preparing the Database

As indicated previously, OneBook uses MySQL as its database application. In order to make this work on your system it is necessary to take the following steps:

1. Create a new MySQL user named “onebook” using the $ONEBOOK_HOME/sql/database_permissions.sql script as follows:
$ mysql –u root \

< $ONEBOOK_HOME/sql/database_permissions.sql

2. Create and seed the database using the following commands (replacing $ONEBOOK_HOME with the location of the unpacked distribution on your system):
$ cd $ONEBOOK_HOME

$ make new
3.3.2 Configuring Tomcat

Once the database has been prepared, you must tell Tomcat about the OneBook application. To do this, add the following line to the application properties section of your $TOMCAT_HOME/conf/server.xml file (where $TOMCAT_HOME indicates the base directory of your Tomcat installation):

<Context path=”” docBase=”$ONEBOOK_HOME/war” debug=”9”

 reloadable=”true”/>

This will make OneBook the “root context” under Tomcat. Thus, if the name of your server is onebook.watsamatta.edu, the URL for accessing OneBook (using the default Tomcat port 8080) will be

http://onebook.watsamatta.edu:8080/
See the Tomcat documentation for more information about using the server.xml file to configure an application. You must restart Tomcat before changes to server.xml take effect.

3.4 Final Setup

Before you begin using OneBook, you may want to change the password of the MySQL user you created when preparing the database (the default is the empty string “”.) In addition to changing the password according to the MySQL documentation, you will need to edit the .onebook/properties file which was automatically generated in your home directory (/home/bob if your user name is “bob”, or /root if you are the superuser) when you seeded the database.

The .onebook/properties file defines a number of settings which influence how OneBook runs, but the only one we are interested in for now is the DatabasePassword property. To change the password for the “onebook” MySQL user created earlier, do the following:

1. Ensure that .onebook/properties is readable by only you and the process under which Tomcat runs.

2. Edit .onebook/properties so that the DatabasePassword property is set to the desired password.

3. Change the password for the “onebook” using the appropriate MySQL “GRANT” commands.

Congratulations! You have successfully installed OneBook on your server.

To begin using the system, point you web browser to the URL of your server (using port 8080 under a default Tomcat installation) and log in as “admin” with a password of “admin”. Be sure to change that password to something more secure via the “Browser” interface before exposing the system to the rest of the world. See the User Reference Manual for more information.

4 A Tour of the System

The following presents a high-level description of how OneBook is implemented – from the database to the client and back again. This includes the structure of the SQL database, the use of Java to retrieve and organize data, and the presentation logic of the JSP pages. To make such a description concrete, we then give a detailed example how a specific feature (creating an assignment) has been implemented. In addition, we discuss how OneBook may be modified and extended for adaptation to new environments. Finally, we present a list of known bugs in the system.

4.1 The OneBook System Architecture

We begin our description of the OneBook system by presenting the architecture used to implement it. As represented by Figure 4‑1 below, OneBook relies on a four-tiered architecture, composed of a web client, a JSP application, several server-based services and objects, and a database, which is abstracted by a database manager.

[image: image3.png]
Figure 4‑1: Top-Level Architecture

4.1.1 JSP Layer

The JSP layer is composed of a number of JSP-enabled HTML pages, each one corresponding roughly to a specific task a user might perform or request he or she might make. In general, a given page will generate an HTML form, process a request, or display a result based on user input. Exceptions to this pattern are JSP files which have been designed only to be included as parts of other pages. The code in such files has been separated in the interests of abstraction and code sharing. The following discussion illustrates the responsibilities of the JSP level and how information is shared at that level.

4.1.1.1 Parameters and Attributes

Information is passed from the client to the server in the form of HTTP request parameters, and retrieving these parameters is among the primary jobs of the JSP level. In general, these parameters are passed using the HTTP POST mechanism. However, when the parameters must be embedded in HTML hyperlinks, the GET mechanism is used instead.

Parameters generally represent requests to change the properties of objects such as assignments or groups, or requests to modify a view of data. Request parameters can also affect the state of a user’s session. The most notable example of this is when a user selects a new section from the drop-down menu in the navigation bar. This causes a “sectionID” parameter to be sent to the server, which responds by changing the context in which data is viewed to be based on the new section. Moreover, this altered context persists in the form of a session attribute.

OneBook uses session attributes at the JSP level in cases where an aspect of the session’s state must persist across multiple page requests. In the example given above, a “section” attribute is set which indicates the section for which data is to be viewed. This attribute persists until a new “sectionID” parameter is changed.

Note that the state for a given session is maintained by the JSP container (Tomcat), the implementation of which is beyond the scope of this document.

4.1.1.2 OneBook Custom Actions

The OneBook system defines a number of JSP custom actions (custom tags) which are accessed via the “ob” tag library (obtaglib.tld) and defined in the onebook.tags package. These tags have the form <ob:tag_name>tag contents<ob:tag_name> when embedded in a JSP, where tag_name indicates the name of the tag as given in the tag library. The purpose of each of these tags is described below described below. See the Javadoc for onebook.tags for detailed information.

	Tag Name(s)
	Java Class(es)
	Purpose

	ob:bundle
	Bundle

BundleExtraInfo
	Packages the results of JSP code for positioning in a template.

	Ob:help
	HelpTag
	Defines inline help text such that the text only appears when the user selects the appropriate help level.

	Ob:helpContainer
	HelpContainer
	Extends ob:help to group help text with the thing (link, table, etc.) it explains.

	Ob:navlink
	NavLink
	Defines a context-sensitive link in the global navigation bar.

	Ob:table
	Table
	Constructs an HTML table with flat, one-pixel borders.

	Ob:th
	TableHeader
	Defines a header for an ob:table.

4.1.1.3 The Template

Nearly every displayable JSP in the OneBook system is forwarded to a single template file (template.jsp) before the result of a client’s request is sent to the client. This template enforces a uniform overall structure for all the pages which use it and optionally includes a navigation bar in the result. In order for this to work, the original JSP must be able to pass its HTML to the template and specify where each piece should be displayed. This is accomplished via the ob:bundle custom action.

Each ob:bundle placed in a JSP page defines (1) the contents to be displayed and (2) the place those contents belong in the template structure. The contents to be displayed simply consist of the result produced by the JSP code within the open and close ob:bundle tags. The position in which those contents belong is defined by the “id” attribute of the ob:bundle tag. The “id” attribute should be one of the following: docTitle, topLeft, left, middle, or right. However, docTitle, left, and middle are the only positions commonly specified. The bulk of the page is placed in the middle position, while context-specific menus may be placed in the left and/or right positions.

In addition to placing HTML forwarded by other JSPs, the template usually places a navigation bar (navbar.jsp) at the top of the client’s view. This bar may be suppressed via the “suppress_navbar” parameter.

4.1.1.4 A Breakdown of the Interface

Now that we have discussed the framework on which the JSP level is based, we will break down the interface into its primary components.

	Component
	JSP(s)
	Purpose

	Authentication
	login.jsp

validateLogin.jsp

logout.jsp

createUser.jsp

processCreateUser.jsp
	Logs a user in and out based on a login name and password and allows new users to be added to the system.

	Portal
	portal.jsp
	Summarizes assignment, handout, announcement, and grade information for all the classes a user is taking or teaching.

	Course Sections
	myclasses.jsp

courseSection.jsp

editCourseSection.jsp

processCourseSection.jsp
	Allows the user to view, create, and possibly modify course sections based on those the (s)he is currently taking.

	Groups
	groups.jsp

createGroup.jsp

processCreateGroup.jsp

editGroup.jsp

processGroup.jsp

viewGroup.jsp
	Allows the user to view, create, and possibly modify groups based on those (s)he is currently a member of.

	Browser
	filecab.jsp

cabinetACL.jsp

cabinetAttachFile.jsp

cabinetShowCourse.jsp

cabinetShowDirectory.jsp

cabinetShowDocument.jsp

cabinetShowGroup.jsp

cabinetShowSection.jsp

cabinetShowTagDictionary.jsp

cabinetShowTag.jsp

cabinetShowUser.jsp
	Allows the user to browse and possibly modify a variety of OneBook objects including directories, documents, tags, and others.

	Grades
	grades.jsp

editGrades.jsp

editGradingPlan.jsp

gradingChooseAssign.jsp

gradingChoosePA.jsp

gradingChooseSection.jsp

gradingMatrix.jsp

processGradingPlan.jsp

statistics.jsp

statistics_setup.jsp

statistics_current.jsp

statistics_section.jsp

viewGrades.jsp

viewGradesChooseAssign.jsp

viewGradingPlan.jsp
	Allows the user to view and possibly modify current grade information on individual and class bases. This includes grades for problems, assignments, and course sections, presented in both numerical and graphical formats.

	Assignments
	assignments.jsp

createAssignment.jsp

editProblems.jsp

processAssignment.jsp

processProblems.jsp

processDetailAssignmentTags.jsp

viewAssignment.jsp

viewAssignmentDetail.jsp
	Allows the user to view and possibly modify and create assignments for the sections in which (s)he is involved.

	Handouts
	handouts.jsp

createInfoHandout.jsp

processInfoHandout.jsp

viewInfoHandout.jsp

viewSpecificHandout.jsp
	Allows the user to view and possibly modify and create handouts for the sections in which (s)he is involved.

	Announcements
	announcements.jsp

createAnnouncement.jsp

processAnnouncement.jsp

viewAnnouncement.jsp
	Allows the user to view and possibly modify and create announcements for the sections in which (s)he is involved.

	Miscellaneous
	editAcl.jsp

processACL.jsp

viewAcl.jsp

editTagDictionary.jsp

processTagDictionary.jsp

error.jsp

getSection.jsp
	These pages are generally used in more than one context and provide the abilities to edit and modify ACLs and tag dictionaries.

Error.jsp provides a simple template for displaying system errors.

GetSection.jsp is statically included in several pages to define the current course section context.

4.1.1.5 Security

Since OneBook is intended to be an Internet application, and since it involves passing potentially sensitive information such as grades to and from the client, security will likely be a concern for the OneBook administrator. However, the level of security in the default OneBook installation is limited to authentication of users and resource protection based on that authentication. Thus, although OneBook can control access to data based on requests sent by a properly identified user, it relies on the integrity of the client-server connection to guarantee that the data are not intercepted.

Therefore, the security of the system depends on protection of the HTTP channel. Since Tomcat supports SSL (Secure Sockets Layer), such protection is easy to apply, but doing so remains the responsibility of the administrator. Use of SSL, combined with a good firewall, should provide an effective level of security for any academic environment.

4.1.2 Object Layer

Each request or submission made by a user is passed from the JSP layer to the database via an appropriate object or set of objects at the object layer, which is implemented in Java.

This object may either be a primitive object or a service object. A primitive has a direct representation in the database and can be specified by a unique integer identifier. An object of this type might represent a user, an assignment, a course, or some other persistent entity. In contrast, a service has no such representation or identifier. Instead, it accesses and manipulates the data in one or more primitives, handling difficult calculations and form validation logic which would otherwise clutter JSPs. An example of a service is the Grade bean, which calculates grades at both assignment and course levels, utilizing the Problem, Assignment, and CourseSection primitives, among others, to do so.

Also at this level are a number of utility classes which serve a variety of purposes. Among these utilities is a caching mechanism that ensures that redundant instances of the same primitive do not occupy the JVM concurrently.

The following sections briefly describe the purpose of each of these java classes. See the API Javadoc for their detailed specifications.

4.1.2.1 Primitives

The OneBook primitives constitute most of the onebook.data package. The purpose of each is given below.

	Class Name
	Purpose

	ACL
	Defines the Access Control List for a primitive, specifying who owns that primitive as well as who may read and/or write from/to it.

	Announcement
	Represents a message from an instructor to his or her students.

	Assignment
	An assigned task as defined by an instructor.

	Course
	Represents an academic class in its semester-independent form.

	CourseSection
	A semester-specific instance of a course.

	Directory
	A container which may contain an arbitrary number of subdirectories and/or documents.

	Document
	A wrapper for zero or more files such as text, image, or executable files.

	FileObject
	An abstract representation of a document which handles file I/O.

	GradingPlan
	Represents the relative weights of various assignment types for a course section.

	Group
	Used to associate multiple users with each other and treat them as a unit.

	Handin
	Constitutes the work a student has done for an assignment.

	Handout
	Represents a document which an instructor wishes to distribute to his or her students.

	Primitive
	The abstract ancestor of all other primitives in the OneBook object hierarchy.

	Problem
	A gradable subdivision of an assignment.

	ProblemScores
	Associates students with problems and defines the scores they have received on those problems.

	Tag
	Defines string of characters (a key phrase) which may be associated with an object.

	TagDictionary
	A container for organizing tags.

	User
	An individual OneBook user who is taking zero or more course sections and teaching zero or more course sections.

4.1.2.2 Services

The OneBook services, or beans, are members of the onebook.bean package. The purpose of each is given below.

	Class Name
	Purpose

	AnnouncementBean
	Represents the user interface view of an Announcement, including a label, a date, content, and an optional hyperlink that can be used to get more information.

	AssignmentBean
	The UI view of an Assignment which may be used as a “staging area” for loading up data for an Assignment to be committed all at one time

	BarGraph
	Constructs a bar graph based on a DataSet.

	BoxGraph
	(not currently used) Constructs a box graph based on a DataSet.

	CalendarGenerator
	Generates an HTML calendar based on recent and upcoming assignments, etc.

	DataObservation
	Retrieves a student’s score(s) for a given assignment or problem.

	DataSet
	Models a data set for generating statistical information for a course section.

	FileCab
	Works with filecab.jsp to generate the OneBook Browser interface, which allows the user to browse and modify a variety of primitives.

	Grade
	Models student grades for assignments and problems.

	GradeBean
	Compiles student grades at the problem, assignment, and course section levels.

	GroupBean
	Handles the transactions involved in creating and editing OneBook groups.

	HandoutSorter
	Sorts handouts based on their release dates.

	HomeworkDue
	Represents a homework assignment that is due in the near future.

	HomeworkDueSorter
	Sorts assignments based on their due dates.

	OneBookBean
	An interface for beans that represent and perhaps modify primitives.

	Portal
	Organizes the information available on a user’s portal page.

	StatsBean
	Organizes the information available in the OneBook Statistics interface.

	SummaryStatistics
	Constructs summary statistics (std. Dev., etc.) based on a sorted array of values.

	UserBean
	A wrapper for the User primitive.

4.1.2.3 Utilities

The remaining Java classes in the OneBook system are utility classes which reside mainly in the onebook.util package, with the remainder in the onebook.data package. They are described below.

Onebook.util

	Class Name
	Purpose

	DatabaseDate
	Abstracts the method by which dates are stored within the database.

	DateConverter
	Converts between the database and Java representations of dates.

	DBSeed
	A database seeding utility which creates a set of sample users, course sections, etc. in the system.

	ExcelDownload
	Defines a simple servlet which converts grade information to a comma-separated value file.

	FileDownload
	A servlet which retrieves the contents of the file associated with a given document.

	FileUpload
	Uploads a file to the server and creates some subclass of FileObject to represent it, and then redirects processing to a JSP that can be customized to handle the rest of the request.

	FileUploadResult
	A wrapper for the client’s request parameters that went along for the ride when a file was uploaded.

	GIFEncoder
	A class which takes an image and saves it to a stream using the GIF file format.

	ImageDownload
	Represents the image portion of the statistics interface.

Onebook.data

	Class Name
	Purpose

	Branch
	Classes extending Branch and implementing the appropriate methods may be browsed in a OneBook Browser browsing tree

	Cache
	Maintains weak references to every primitive brought into memory and prevents redundant instances of a given primitive from being constructed. (See 4.2.4.2 for an explanation of weak references.)

	SQLManager
	Abstracts JDBC calls to an SQL database.

4.1.3 Database Manager and Database

Once a user request or submission has been processed at the object layer, it is passed via a database manager to the database. The database manager is simply a thin abstraction which hides the syntax details of reading and writing from and to the MySQL database. The database itself contains one set of tables corresponding to the various OneBook entities (user, course, etc.) and another set of tables which define relationships among those entities (which groups consist of which members, for example).

4.1.3.1 The Database Manager – SQLManager.java

All communication between the object layer and the database is done through a singleton instance of SQLManager. This class is currently limited to relatively simple SQL queries. These queries are parameterized using character strings to specify table names, integers to specify primitive Ids, and hash tables to specify conditions and update information. Return values may be of type String, int, int[], or float, depending on the data requested.

4.1.3.2 The Database Schematic

The OneBook database is composed of two sets of tables – one for storing primitive definitions and one for relating primitives with one another. The following briefly describes the contents of each primitive table and the purpose of each relational table. See database_build.sql for a complete listing of these tables.

Primitive Tables

	Table Name
	Contents

	ACL
	Ids of all Access Control Lists in the system.

	Assignment
	ID, type, due date, and release date of each assignment in the system.

	Announcement
	ID and body of each announcement.

	Category
	ID and name of each category.

	Course
	ID, name, free-form name, college name, and department name of each course.

	CourseSection
	ID, year, and term of each course section.

	Directory
	ID of each directory.

	Document
	ID, type, mime type, and file name of each document.

	FileObject
	ID, description, filename, pathname, creation time, and modified time for each file.

	GradingPlan
	ID and percentages worth for various assignment types for each grading plan.

	GroupInfo
	ID, name, and description for each group.

	Handin
	ID and associated group for each handin.

	Handout
	ID and release date for each handout.

	Problem
	ID, name, and point value for each problem.

	Syllabus
	ID of each syllabus.

	Tag
	ID and string value of each tag

	TagDictionary
	ID of each tag dictionary.

	User
	ID, first name, last name, password, and administrative status of each user.

Relational Tables

	Table Name
	Purpose

	ACLGroupOwners
	Relates ACLs and their owners.

	ACLGroupWrite
	Relates ACLs and those with write access.

	ACLGroupOwners
	Relates ACLs and those with read access.

	ACLPrimitive
	Relates ACLs and the objects they protect.

	AssignmentGroups
	Relates assignments and the groups and/or users they are assigned to.

	AssignmentHandin
	Relates assignments and the handins submitted for them.

	AssignmentProblems
	Relates assignments and the problems which they have been subdivided into.

	CatagoryPrimitives
	Relates categories and the primitives they contain.

	CourseCourseSections
	Relates courses and the sections which descend from them.

	CourseTagDictionary
	Defines the tag dictionary associated with each course.

	CourseSectionAssignments
	Relates course sections and the assignments defined for them.

	CourseSectionAnnouncements
	Relates course sections and the announcements defined for them.

	CourseSectionStudents
	Relates course sections and the groups and/or users enrolled in them.

	CourseSectionHandouts
	Relates course sections and the handouts defined for them.

	CourseSectionSyllabus
	Defines the syllabus associated with each course section.

	CourseSectionGradingPlan
	Defines the grading plan associated with each course section.

	GroupDirectory
	Defines the home directory associated with each group, user, and course section.

	GroupTagDictionary
	Defines the tag dictionary associated with each group, user, and course section.

	DirectoryDirectories
	Relates directories and the subdirectories they contain.

	DirectoryDocuments
	Relates directories and the documents they contain.

	DocumentDocuments
	Relates documents and the documents attached to them.

	DocumentTags
	Relates documents and the tags attached to them.

	GroupMembership
	Relates groups and the groups and/or users which are members of them.

	HandoutHandin
	Relates handouts and the handins associated with them.

	PrimitiveCatagories
	Relates primitives and the categories which descend from them.

	ProblemScores
	Relates groups and users and the problems they have been assigned and associates a score and comment with each combination.

	ProblemTags
	Relates problems and any tags associated with them.

	TagDictionaryTags
	Relates tag dictionaries and the tags they contain.

4.2 Example: Creating a New Assignment

Having presented the framework with which OneBook has been implemented and described the purpose of each of its components, we now trace through an example which exercises all levels of the system. In this example, we examine the flow of control and information that takes place when a user creates a new assignment for a OneBook course section.

4.2.1 Filling out the Form – createAssignment.jsp

To begin, we assume that the user (call her Jill) has successfully logged in to the system and navigated to createAssignment.jsp. Once an instance of the servlet compiled for this JSP has been loaded for the request, that servlet first loads the UserBean associated with Jill’s session, which tells it about who Jill is.

Next, the servlet uses the code from a statically included getSection.jsp to determine the course section for which the assignment is created. This code checks first for a “sectionID” parameter, and then, if no such parameter exits, for a “section” attribute. If neither of these is found, a null pointer exception is generated and caught, and the servlet forwards to error.jsp with an explanation. Otherwise, if a valid section is defined, the servlet checks whether Jill (as identified by the UserBean) is an instructor for that section or not. If not, an exception is thrown with an appropriate message. Finally, if these tests succeed, the servlet moves on to the body of the JSP.

In the body, two bundles (see 4.1.1.3) are defined for forwarding to the template. The first simply gives the title of the page, while the second defines the form to be displayed. The contents of these bundles are evaluated and saved in the JSP container’s request scope, control is forwarded to template.jsp, the bundles are included in the template defined there, and the result is evaluated and sent back to Jill. Once Jill has filled out the form, which defines the attributes which the new assignment will have, and clicks the button to submit the form, the result is sent back to the server and handled by the FileUpload servlet.

4.2.2 Retrieving files – FileUpload.java

The FileUpload servlet handles Jill’s request by first determining whether or not Jill uploaded a file to be associated with the new assignment. If she did, a new assignment primitive is created, and the file is associated with it (see below to find out how primitives are created.) The servlet then forwards to processAssignment.jsp.

4.2.3 Validating Input – processAssignment.jsp and AssignmentBean.java

At processAssignment.jsp, an instance of AssignmentBean is created and the parameters retrieved are loaded into it. Additionally, processAssignment.jsp must specify whether or not the FileUpload servlet has already created a primitive to model the new assignment – if it has, the AssignmentBean should use it – if it hasn’t, AssignmentBean must create a new primitive itself.

If the AssignmentBean finds that some part of the data it has received is invalid (an integer which cannot be parsed, for example), a call to its validate() method will return false, causing processAssignment.jsp to forward back to createAssignment.jsp with a message explaining the problem. Thus, Jill is given another chance to input her data.

If, on the other hand, the data passes inspection, processAssignment.jsp calls the bean’s commit() method to commit the data to a primitive. If, at this time, the bean finds that an assignment primitive has not already been created it must create one itself with a call to Assignment.newAssignment().

4.2.4 Creating a Primitive – Assignment.java

When the AssignmentBean calls the static method Assignment.newAssignment(), a new Assignment instance is created in the JVM via a call to the Assignment() constructor, which also causes the necessary table entries to be inserted into the database via an SQLManager singleton. Finally, the new instance is added to a Cache singleton for later reference.

4.2.4.1 Updating the Database – SQLManager.java

The constructor for every primitive calls that primitive’s initTables() method, which inserts default values for that primitive in the appropriate tables. Also, the constructor for every primitive except Primitive itself calls the constructor for its superclass, thereby initializing the appropriate tables at every level above it in the object hierarchy. Each initTables() method calls an insert() method of an SQLManager singleton which, in turn, generates a MySQL instruction to be sent to the MySQL server via JDBC.

4.2.4.2 Keeping Primitives Close at Hand – Cache.java

The last thing Assignment.newAssignment() does before it returns the new Assignment instance is add it to a Cache singleton. The Cache adds that instance to a hash table with its unique ID (defined by the database) as a key. This table uses weak references to each primitive it contains, leaving that primitive free to be garbage collected (removed from the JVM), provided there are no other references to it.

Thus, next time the new Assignment is accessed via Assignment.getAssignment(), that method first checks the Cache singleton to see if it is still in memory. If it is, the reference is returned from the Cache. Otherwise, a new instance is constructed from the relevant database entries, added to the Cache, an returned.

4.2.5 Finishing Up

Having retrieved the assignment primitive or created a new one, as necessary the AssignmentBean writes its properties based on the data received from Jill. Those properties are immediately propagated to the database, so that Jill’s students will see the assignment the next time they access the assignments page for that course section.

4.3 Extending OneBook

OneBook has been designed from the start to be extendable. The idea was to implement a core set of functionality which could later be modified and/or extended for adaptation to a particular academic environment. The following discusses three general classes of extensions and how they might be accomplished.

4.3.1 User Interface Extensions

This is perhaps the easiest place to add new functionality. In general, adding a new user interface function means writing a new bean to compile and/or validate primitive data, writing a small set of JSPs, and providing hyperlinks to those JSPs within existing JSPs. In other cases, adding a function may only mean modifying existing JSPs and beans. To do either of these tasks successfully, you must understand the Primitive API and the flow of control a the JSP level (using the template, etc..)

Possible extensions at this level include:

· Generating a single hyperlink via which instructors may download the work of all students for a given assignment.

· Providing a more scaleable interface for browsing large data sets such as all the students in a University.

· Providing grade statistics on the basis of the tags associated with the graded problems.

4.3.2 Primitive Extensions

For more fundamental modifications of OneBook’s functionality, it is necessary to either modify existing primitives or create new ones. This is appropriate when particular objects must be modeled which have no counterpart in the OneBook primitive hierarchy. To make changes at this level, it is necessary to understand how primitives are created, accessed, and destroyed, both at the Java and database levels.

Possible extensions at the primitive level include:

· Associating student-to-instructor and instructor-to-student feedback with handouts and handins, respectively.

· Modeling colleges and departments as primitives.

· Allowing text searches on files and object descriptions.

4.3.3 Database Extensions

In the interests of speed, reliability, and flexibility, it may be desirable to modify the database layer of the OneBook system. Fortunately, the task of switching to a new database (SQL or otherwise) is limited to writing a new database manager which implements the same interface as SQLManager.java and writing a new table-creation script with the same information as database_build.sql.

Advanced database users may wish to make more sophisticated use of the database (using transactions, joins, etc.). Doing so may require modifying the database manager interface itself and changing code at the primitive level accordingly.

Possible extensions at the primitive level include:

· Switching databases.

· Using more sophisticated database techniques.

· Providing for serialization to XML or other formats.

4.4 Known Bugs

The following is a list of currently known and unresolved bugs in the OneBook system.

	Bug Summary
	Description

	Illegal file upload path causes problem
	Entering an illegal pathname in Create Assignment
creates an assignment with no file attached to it.
Because you can’t add a file in Edit Assignment, the
only way to fix this is to delete the assignment and
create a new one.

	Illegal dates handled incorrectly
	Illegal dates are handled incorrectly;
i.e. 2002/4/2 -> October 04, 0168.
i.e. 25/99/2002 -> April 08, 2004

	illegal due/release dates not handled
	In createAssignment, the user should be warned about release dates later than due dates and due dates which have already passed.

	Negative values in problem creation
	In problem creation, entering a negative value for the points possible, the error gives wrong problem. I.e. setting problem 2 to –5, produces error referring to problem 1

	can’t edit problems after assignment creation
	It is not currently possible to edit assignments after assignment creation.

	Negative numbers accepted for grading plans
	Entering negative assignment weights for a grading plan currently produces no errors.

	Term shows as # when editing course section
	Currently, the term a course section is defined for is presented as a number 1-4 instead of fall, spring, summer, or winter.

	Can’t describe problems
	It is not possible to give descriptions to problems independent of the assignment they are associated with.

	Tag dictionary security flaw
	The system does not currently determine whether or not a user has permission to edit a tag dictionary at the processing page.

	Tag dictionary security flaw II
	Anyone can edit the tag dictionary for a course via editTagDictionary.jsp

	user edit unclear
	In the browser, it is unclear whether a user’s password has been reset to an empty string or is just being hidden.

5 Summary

This document provides two services to the OneBook developer. First, it gives the requirements and instructions for installing the system. Second, it describes the architecture which the system implements and how to modify and extend that architecture.

6 Related Documents

In this section, we provide references to documents that are related to the design and implementation of this system. These references include links to requirements and system architecture documents, information about the software supporting OneBook, and detailed API documentation for the object and database tiers.

6.1 Other OneBook Documentation

	Requirements Specification
	requirements_specification.doc

	System Architecture
	system_arch.doc

	Design
	design.doc

6.2 Supporting Software

	Red Hat Linux 7.2
	http://www.redhat.com/

	Java 1.3.1
	http://java.sun.com/j2se/1.3/docs/api/

	MySQL
	http://www.mysql.org/

	Apache Tomcat
	http://jakarta.apache.org/tomcat

6.3 Additional Documentation

	Javadoc
	javadoc/index.html

	MySQL Schematic
	sql/database_build.sql

7 Glossary

This section contains definitions of several terms as they are used in this document and in the API. Most of the terms are familiar, but are used in the document in specific and sometimes slightly unconventional ways, so it is important to cross-reference usage of these terms in the document with the definitions found below.

	ACL
	Access Control List; controls access to a specific resource by naming which users and/or groups may read from, write to, and/or change the permissions for that resource.

	Assignment
	The specification for any exam, test, quiz, project, or other work an instructor might assign.

	Bean
	Short for Java Bean; a Java object with “get” functions for all its readable members and “set” functions for all its writeable ones. Note that additional features are required for an object to be a true Java Bean, but we do not concern ourselves with them.

	Bundle
	A piece of HTML/JSP that is encapsulated. This object can be passed between pages and expanded.

	Course
	A university course such as CSCI 4308 – not semester-specific.

	Course Section
	A semester-specific instance of a course such as CSCI4308, Fall 2001. We use this term to avoid confusion with the object-oriented sense of “class”.

	Directory
	A partition for holding OneBook file objects.

	Document
	A file object with content such as text associated with it.

	File Object
	A OneBook directory or document.

	Handin
	A document submitted by a student for review by an instructor.

	Handout
	A document submitted by an instructor for review by a student.

	ID
	A unique identification number assigned to a primitive when it is created in the OneBook database. This number is used in almost all references to a primitive.

	Instructor
	The professor teaching a course section, a teaching assistant, or a grader.

	JDBC
	Java DataBase Connectivity; provides a connection between the Java Runtime Environment and a database server.

	JSP
	Java Server Pages; a tagged language for integrating server-based processing into markup languages such as HTML.

	JVM
	Java Virtual Machine

	Primitive
	A OneBook object such as a handout, user, or course. A primitive is defined by entries in one or more tables in the OneBook database and may also be represented by an instance of a Java class.

	Problem
	A gradable subdivision of an assignment.

	Service
	A OneBook object with no independent representation in the database. Instead, a service acts as a composite of one or more primitives, acting on behalf of a JSP page to organize and combine data from each primitive.

	Student
	Anyone who is enrolled or has been enrolled in one or more course sections; may also be an instructor.

	Tag
	A string of text which may be associated with any document to describe the subject matter or skills that document addresses.

	Tag Dictionary
	A collection of tags.

8 Document Revision History

	4/11/2002
	0.1
	Original document creation
	Joel Dice

	4/15/2002
	1.0
	First respectable draft complete
	Joel Dice

	4/16/2002
	1.1
	Implemented Jim’s suggestions
	Joel Dice

	4/18/2002
	1.2
	Started work on the “Installation” section
	Joel Dice

	4/21/2002
	2.0
	Completed the “Installation” section
	Joel Dice

	4/22/2002
	2.1
	Fixed the mistakes Bruce pointed out and refined the “Installation” section a bit
	Joel Dice

	4/26/2002
	2.2
	Added the missing “of” that Jim pointed out
	Joel Dice

	4/29/2002
	2.3
	Fixed a misspelling that Bruce pointed out and added an introduction to the “Installation” section
	Joel Dice

	5/6/2002
	2.4
	Updated bug list; expanded ACL definition in Glossary; updated document references;
	

PAGE
20

[image: image4.png]_1063067507.bin

